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Abstract

A risk-neutral principal considers hiring one agent to improve a valuable, observable
outcome. Who to hire? How to motivate? In this paper, the principal designs an
incentive contract that pays according to the realized outcome and sells the contract
to an agent through an auction. The paper finds the class of contract-auction pairs
that guarantee the principal a non-negative expected payoff. Such pairs, which include
linear contracts, are maximin-optimal: they maximize the principal’s worst-possible
expected payoff. The work is based on two contract-auction-specific assumptions: that
the contract induces the contracted agent to weakly improve the outcome, and that the
auction satisfies a revenue guarantee. Under these assumptions, the principal pays only
for outcome improvements that the contract induces. Therefore, she achieves a non-
negative payoff guarantee if her marginal benefit of the outcome exceeds the contract’s
marginal payment schedule. The principal can design an auction that attains the
revenue guarantee if she knows the expected contract payment of the outcome that
would occur absent agent activities or if agents know this quantity. The paper extends
the analysis to situations where the principal incurs various costs and she or agents
have limited commitment power.
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Consider a principal who wishes to hire one agent to improve a valuable outcome. A

philanthropist might want to preserve a well-defined section of rainforest for an additional

year or reduce the monthly average concentration of greenhouse gases in a given section of

the atmosphere; an interest group might want to repeal a piece of legislation by the end of a

political cycle. Which agent should the principal hire? How should she motivate the agent

she hires? She contracts solely based on the outcome realization, which is observed sometime

in the future. How, then, should she design a payment schedule? How should she allocate

the resulting contract?

As in McAfee and McMillan (1986), we study a situation where a risk-neutral principal

allocates an incentive contract among agents through a competitive bidding process. Our

setting differs from this and related procurement settings in that our principal sells the

incentive contract as-is rather than having agents bid over the contract terms. So, the

principal’s payoff increases with the auction’s revenue and the outcome improvement induced

by the incentive contract and decreases with the incentive contract payment associated with

the outcome realization. Moreover, our principal is not Bayesian. To design an incentive

contract and choose an auction, she does not rely on her beliefs about the actions agents can

take to improve the outcome, the consequences of different actions on the outcome, agents’

payoff functions, or the relationship between different agents’ cost structures. She observes

the realized outcome, knows her benefit from different outcome realizations, and evaluates

contract-auction pairs according to their robustness, i.e., their worst-case expected payoff or

payoff guarantee.

A contract-auction pair that offers the principal a non-negative payoff guarantee is attrac-

tive. If the principal issues this contract and sells it using this auction, her expected payoff

cannot be negative. At worse, she is left as well-off as she would have been had she not

issued or sold the contract. Of course, a contract that pays precisely zero for any outcome

realization is worthless and would not induce any agent to improve the outcome, yielding

a (non-negative) payoff guarantee of zero. However, are there non-trivial contract-auction

pairs that achieve this?

The central result of this paper is the characterization of the class of contract-auction pairs

with a non-negative payoff guarantee. To explain this characterization intuitively, consider

an incentive contract and an auction format to allocate the contract among several agents.

The principal’s payoff from this contract-auction pair has three components. First, the

auction revenue: agents bid for the contract and pay the principal according to the auction

rules. Second, the benefit from the outcome realization: the contract induces the contracted

agent to influence the outcome. As a result, the outcome may differ from the counterfactual

outcome that would have occurred had the principal not issued or sold the contract, and the

principal benefits accordingly. Third, the contract liability: after the outcome is realized, the
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principal must pay the contracted agent according to the contract’s terms and conditions.

Now, the principal’s payoff guarantee from the contract-auction pair is the expected

payoff she would obtain in a worst-case scenario. Our assumptions are useful because they

constrain the kinds of worst-case scenarios that can arise. Consider our first assumption: that

the contract induces the contracted agent to improve or at least not worsen the outcome.

If we allowed the contracted agent to worsen the outcome, then, in a worst-case scenario,

the auction would raise no revenue, the contracted agent would worsen the outcome, and

the principal would pay the agent according to the outcome realization. In this scenario,

the principal is worse off — she should not have issued the contract and auctioned it off.

Next, suppose that the contracted agent weakly improves the outcome but the principal

allocates the contract to an agent free of charge. In a worst-case scenario, the contracted

agent would do nothing to improve the outcome and the principal would pay the agent for

the outcome realization. In this scenario, the principal is worse off because she pays the

agent for an outcome that would have occurred anyway, even if she had not issued or sold

the contract. We rule out such worst-case scenarios by assuming that the auction satisfies a

revenue guarantee. Concretely, our second assumption is that the auction’s expected revenue

meets or exceeds the expected contract payment of the counterfactual outcome that would

have occurred absent agent activities.

If the contract-auction pair satisfies both assumptions, then the principal effectively pays

only for outcome improvements that the contract induces. Therefore, the contract-auction

pair has a non-negative payoff guarantee if the principal’s marginal benefit from the outcome

exceeds the contract’s marginal payment schedule. Linear contracts, which pay a fixed share

of the principal’s benefit, naturally satisfy this condition, as do linear contracts that establish

a maximum liability for the principal. Such contracts ensure that the principal’s benefit

exceeds her liability for any possible outcome improvement.

Among contract-auction pairs with non-negative payoff guarantees, are there ones that

offer a better guarantee than others? Our answer is negative. The payoff guarantee of

every possible contract-auction pair is less than, or equal to, zero, meaning that contract-

auction pairs with a non-negative payoff guarantee are also optimal, according to the maximin

criterion. The intuition behind this result is straightforward. For every contract-auction pair,

our assumptions cannot rule out the possibility that the contracted agent does nothing to

improve the outcome and that the auction’s expected revenue exactly equals the expected

contract payment of the baseline outcome. In this case, the principal’s payoff equals zero.

Hence, her payoff guarantee is weakly negative.

A drawback of our working assumptions is the ad-hoc nature of the revenue guarantee of

a contract-auction pair. Why and when should one expect that an auction of an incentive

contract will raise revenue that exceeds the contract’s payment of the outcome that occurs
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when the contracted agent does nothing to improve it? This paper shows that this condition

is natural if the principal knows the expected contract payment of the baseline outcome, or

if agents know this quantity and are risk-neutral. If the principal knows this quantity, an

auction will achieve this revenue guarantee if the principal sets it as a reserve price. Instead,

suppose the principal does not know this quantity, but it is common knowledge among risk-

neutral agents. Here, we show that the first-price auction achieves the revenue guarantee

in pure strategy Bayes Nash equilibria across an extensive range of information structures

that, in particular, do not require agents (bidders) to have a common prior. Intuitively, any

agent who owns the incentive contract can choose not to influence the outcome and obtain

the contract payment of the baseline outcome. Because agents are risk-neutral, they are all

willing to pay at least the expected contract payment of the baseline outcome to own the

contract. Since this fact is common knowledge, agents drive the contract price beyond this

quantity in equilibrium.

The theoretical framework that we employ to characterize the set of maximin optimal

contract-auction pairs is flexible. The paper adapts it to incorporate various features that

may arise in real-world applications. We consider situations where the agent’s activities

inflict a negative externality on the principal; it is costly for the principal to design the

contract and organize the auction; it is costly for the principal to gather the funds necessary

to make contract payments; the agent who wins the auction cannot commit to paying for

the incentive contract; and the principal cannot commit to honoring the contract’s terms

and conditions. In particular, we study two ways the principal can eliminate the agent’s

obligation to pay for the contract: by allocating the contract free of charge or deducting as

much of the contract’s selling price from her contractual obligation to guarantee the agent a

non-negative net transfer.

This paper belongs to the literature on the intersection between contract and auction

theory, started by McAfee and McMillan (1986) and Laffont and Tirole (1987). It focuses on

the principal’s payoff guarantee of contract-auction pairs, thus joining a mechanism design

literature that investigates the worst-case properties of contracts and auctions (see Carroll

(2019) for a review). In particular, the finding that specific linear contract-auction pairs are

maximin optimal resonates with Carroll (2015), who finds that linear contracts are maximin

optimal in a contracting environment where the principal is assumed to know about a subset

of payoff-relevant actions that the agent can take. We do not require the principal to know

about any actions the contracted agent can take. Instead, our optimality results build off

the assumption that the contract induces the agent to improve, or at least not worsen, the

outcome that the principal cares about and that the auction has a specific revenue guarantee.

Our finding that the first-price auction has a revenue guarantee that exceeds a commonly

known lower bound on agents’ willingness to pay for the contract relates with Bergemann,
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Brooks, and Morris (2017). They characterize the lowest possible expected revenue from the

first-price auction across information structures where bidders’ beliefs feature a common (and

correctly specified) prior over the joint distribution of valuations. This paper establishes a

revenue guarantee of the first-price auction in pure strategy Bayes Nash equilibria without

the common prior assumption. Our approach requires that every agent’s expected value of

the object for sale exceeds a given threshold and that this fact be common knowledge among

agents.

A related literature studies auctions of assets where bidders make security bids, i.e., pay-

ment commitments that depend on the asset realization (Hansen 1985, DeMarzo, I. Kremer,

and Skrzypacz 2005, Bhattacharya, Ordin, and Roberts 2022). Because the principal is li-

able for the incentive contract payments, having her design the incentive contract and accept

security bids is isomorphic to having agents bid over the terms of the incentive contract,

as in the traditional procurement settings of McAfee and McMillan (1986) and Laffont and

Tirole (1987). In our approach, the principal completely specifies an incentive contract and

auctions it off as-is.

Another related literature studies the design and implementation of pull mechanisms

such as incentive contracts that pay a fixed price for a good or service, called Advance

Market Commitments or AMCs (M. Kremer and Glennerster 2004, M. Kremer, Levin, and

Snyder 2022, M. Kremer, Levin, and Snyder 2020). For instance, Levine, M. Kremer, and

Albright (2005) designed an AMC that paid pharmaceutical companies to produce vaccines

against pneumococcus, a prevalent deadly disease in developing countries. More recently,

Frontier Climate launched an Advance Market Commitment that pays participants for every

ton of carbon dioxide they capture. In contrast with the design of AMCs, our principal

allocates an incentive contract to a single agent. The main reason for this modeling choice is

our interest in situations where the principal observes overall output but not agent-specific

output. Moreover, AMC participants are not selected through a competitive process. Since

participants might have produced output even in the absence of an AMC, the principal’s

payoff relies on the AMC causing output improvements that outweigh AMC payments for

output that occurs even in the absence of an AMC. The point of the auction stage in our

design is to reimburse the principal for such payments.

The plan of the paper is the following. Section 1 presents the model and establishes

the paper’s main results. Section 2 illustrates the framework and the results with several

examples. The examples raise issues that merit extensions of the basic model. Section 3

incorporates these extensions. Finally, section 4 concludes.
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1 Model

1.1 Notation

A probability space (Ω,Σ,P) describes the situation we will consider, where Ω denotes the

sample space, Σ is the Borel σ-algebra on Ω, and P is a probability measure defined on Σ. We

refer to P as the true probability measure. A generic random variableX is a Borel-measurable

function from Ω to the real numbers.

1.2 Setup

A risk-neutral principal considers funding a policy that is implemented during a given time

period and targets a scalar, non-negative outcome that lies in a compact set Y ⊂ [0,∞) ≡ R+,

where y = minY < maxY = y. She values a realized outcome y ∈ Y at b(y) ≥ 0 dollars,

and we assume b : Y 7→ R+ is continuous and strictly increasing. There are n ∈ {1, 2, . . . }
agents available to implement policies that target the outcome, and the principal’s problem

is to hire and motivate one agent. To do so, she issues an incentive contract and sells it to

an agent at the beginning of the time period. The incentive contracts we consider belong to

the set of continuous and non-decreasing mappings from outcome realizations to monetary

transfers, W . So, incentive contract w : Y 7→ R+ has the principal pay the contract owner

w(y) ≥ 0 dollars upon a realization of outcome y ∈ Y , at the end of the period. A central

assumption in this paper is that the principal can measure the realized outcome by the end

of the time period.

The principal uses an auction to allocate the incentive contract. A single-object auction

consists of a set of bids for each agent, (B1, . . . ,Bn), where 0 ∈ Bi ⊆ R+ for all i ∈ {1, . . . , n};
an allocation rule q : ×n

i=1Bi 7→ [0, 1]n, where
∑n

i=1 qi(b) ≤ 1 for all bid profiles b ∈ ×n
i=1Bi;

and transfers from the agents to the principal t : ×n
i=1Bi 7→ Rn

+. We let A denote the set of

single-object auctions, and M = W ×A denote the set of contract-auction pairs.

We treat contract-auction pairs as black boxes and focus exclusively on variables relevant

to the principal’s payoff. For each contract-auction pair m = (w, a) ∈ M, we let Dm be

the binary random variable that indicates if auction a allocates contract w to any agent.

For example, {ω ∈ Ω : Dm(ω) = 0} is the event that the principal does not manage to

sell contract w with auction a. We treat agents who do not participate in the auction as

auction participants who bid zero. So, the event {ω ∈ Ω : Dm(ω) = 0} occurs if agents

do not participate in the auction and the auction allocates the contract only if there is

a strictly positive bid. We denote the outcome that is induced by contract-auction pair

m = (w, a) ∈ M with the random variable Ym, which takes values in Y . Had the principal’s

auction not sold contract w, the outcome would be given by Y 0. If, instead, the principal
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had sold w with auction a, the outcome would be given by Y 1
m. Y

0 and Y 1
m are counterfactual

random variables that relate with the outcome Ym via the standard potential outcomes

equation:

Ym = DmY
1
m + (1−Dm)Y

0. (1)

Y 1
m differs from Y 0 to the extent that contract w effectively motivates the agent who wins

auction a to influence the outcome. We assume that the principal either hires an agent or does

not attempt to influence the outcome through other means and that the behavior of other

agents is unaffected by the principal’s decision to issue and sell an incentive contract. Hence,

the outcome is the same if the principal does not sell the contract, or if the contracted agent

does not influence it. For each m = (w, a) ∈ M, we let Rm be the non-negative random

variable that measures the principal’s revenue from auction a of contract w, and Wm be

the principal’s payment obligation associated with the outcome realization. Of course, the

principal raises revenue and issues contract payments only if she sells the contract so that

Wm = Dm · w(Ym)

Dm = 0 implies that Rm = 0.

The timing of the model is the following. First, the principal selects m = (w, a) ∈ M,

issues incentive contract w, and allocates it among agents using auction a. By the end of

the auction, Rm is realized. Then, Ym is realized and observed by the principal. Afterward,

all payments occur: the principal pays Wm to the contracted agent and obtains Rm. In this

sequence of events, agents delay their auction transfers to the principal until after the outcome

realization rather than immediately after the auction. This choice of timing streamlines the

presentation but is inessential.

Because the principal is risk-neutral, she obtains an ex-post payoff of b(Y 0) if she chooses

not to issue and auction off an incentive contract. In contrast, if she selects contract-auction

pair m ∈ M, she obtains b(Ym)−Wm+Rm dollars’ worth of value.1 Her ex-post payoff from

a contract-auction pair m is then Πm, where

Πm = b(Ym)− [Wm −Rm]− b(Y 0).

Unlike Laffont and Tirole (1986), the principal does not consider any costs of raisingWm−Rm,

1An implicit assumption is that the principal’s other investment decisions are unchanged by her decision to
issue and sell a contract. Formally, let K0 denote the random variable that measures the stock of wealth that
the principal would have achieved immediately after the outcome realization had the principal not issued or
sold an incentive contract. Similarly, let Km be the principal’s counterfactual wealth had she chosen contract-
auction pair m. We assume that Km = K0 for all m ∈ M. When the principal chooses contract-auction pair
m, she acquires a liability equal to Wm−Rm. The rationale for this assumption is that her other investment
decisions do not influence this liability and should therefore dismiss it.
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the funds needed to pay for m. This omission is relevant if, for example, the principal cares

about social welfare and can only raise funds in ways that bring about real resource costs.

We introduce costs of raising funds in section 3.2.

The actual expected performance of m ∈ M equals EP[Πm], where EP is the expectation

operator with respect to the true probability measure, P. Since the principal is risk-neutral,

a contract-auction pair is a sound investment whenever EP[Πm] ≥ 0. Unfortunately, the

principal does not know P. Nonetheless, she is willing to make assumptions about the payoff-

relevant variables for a subset of contract-auction pairs. These assumptions restrict the set

of joint distributions of the payoff-relevant variables, thus ruling out distributions that the

principal does not deem possible. Let P denote the set of probability measures defined on

Σ, the σ-algebra on the sample space Ω. The principal considers the following assumptions,

which are specific to P ∈ P and m ∈ M:

Assumption I. EP [Rm −Dm · w(Y 0)] ≥ 0.

Assumption II. P (Y 1
m − Y 0 ≥ 0) = 1.

A probability measure P ∈ P satisfies Assumption I form ∈ M if the principal’s expected

revenue from contract-auction pair m compensates her for the baseline amount she would

have to pay the contracted agent in case the agent did nothing to influence the outcome.

P ∈ P satisfies Assumption II for m ∈ M if the contract induces the agent to improve the

outcome with probability one. Notice that P (Y 1
m−Y 0 ≥ 0) = 1 implies P (Ym−Y 0 ≥ 0) = 1

and P (b(Ym) − b(Y0) ≥ 0) = 1, since b is strictly increasing. Colloquially, P ∈ P satisfies

Assumptions I and II for m ∈ M if the principal does not give away money to agents for

free, and contract-auction pair m does not backfire on the principal.

The principal imposes Assumptions I and II for a non-empty subset of contract-auction

pairs M∗ ⊆ M of her choice to rule out probability measures that she does not deem likely.

The probability measures that do satisfy the assumptions constitute a subset P∗ ⊆ P , defined

as:

P∗ ≡ {P ∈ P : P satisfies Assumptions I and II for all m ∈ M∗}.

P∗ is well-specified if the true probability measure, P, belongs to P∗. Otherwise, it is mis-

specified.

We assume that the principal behaves according to the maximin criterion. She evaluates

contract-auction pairs based on their worst-case expected payoff across probability measures

P ∈ P∗. For contract-auction pair m ∈ M, this payoff guarantee is Πm, where

Πm =

 infP∈P∗ EP [Πm] if {EP [Πm] : P ∈ P∗} has a lower bound

−∞ otherwise.
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So, the principal’s objective is to choose a contract-auction pair that maximizes her payoff

guarantee. We now show that such a maximum exists and characterize the optimal contract-

auction pairs.

1.3 Analysis

We first inspect the principal’s payoff guarantee, Πm, for all m ∈ M. Intuitively, payoff

guarantees arise from worst-case scenarios constrained by Assumptions I and II. Take, for

example, a contract-auction pair m ∈ M∗, so that any probability measure P ∈ P∗ satisfies

Assumptions I and II for m. In the worst-case scenario that the principal deems possible, the

auction raises the lowest revenue consistent with Assumption I, and the potential outcomes

Y 0 and Y 1
m are as unfavorable to the principal as Assumption II allows them to be. Here,

the auction exactly reimburses the principal for the baseline contract payment, Dmw(Y
0),

in expectation. Net of the auction’s revenue, the principal only pays for changes in the

outcome induced by the incentive contract: the cost of the incentive contract amounts to

w(Ym) − w(Y 0), in expectation. Under Assumption II, the contracted agent improves the

outcome. Hence, the lowest expected payoff for the principal is associated with a probability

measure under which the contracted agent produces the worst possible outcome improvement,

which is given by:

min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)],

where the minimum exists because Y ⊂ R+ is compact and b and w are continuous functions.

Instead, if the contract-auction pair does not belong to M∗, Assumptions I and II no

longer bind. So, in a worst-case scenario, the auction raises no revenue, and the potential

outcomes are as adverse as they can be, provided they lie in set Y . Here, the principal’s

expected cost of the incentive contract is the expectation of w(Ym), and the smallest possible

expected payoff equals

min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1).

Lemmas 1 and 2 summarize this discussion. Their formal proofs lie in Appendix A.

Lemma 1. If m ∈ M∗, then Πm = min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)].

Lemma 2. If m ∈ M \M∗, then Πm = min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1).

Taken together, Lemmas 1 and 2 imply that Πm ≤ 0 if m ∈ M∗, while Πm < 0 if

m ∈ M \ M∗.2 So, any contract-auction pair m such that Πm = 0 is optimal. Moreover,

2If y0 = y1, then b(y1)− b(y0)− [w(y1)−w(y0)] = b(y1)− b(y0)−w(y1) = 0. This proves that Πm ≤ 0. To
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Πm = 0 implies that the contract-auction pair lies in M∗. An inspection of Lemma 1 reveals

that the principal achieves a zero payoff guarantee when the slope of contract w lies below her

benefit b for every pair of possible outcome realizations. In this case, she pays less than her

benefit under any outcome improvement. When the principal imposes Assumptions I and II

for a set of contract-auction pairs that includes such contracts, this reasoning characterizes

the set of maximin optimal contract-auction pairs. Theorem 1 records this result.

Theorem 1. Πm = 0 if and only if m = (w, a) ∈ M∗ and, for all y0, y1 ∈ Y such that

y0 ≤ y1,

b(y1)− b(y0) ≥ w(y1)− w(y0).

Proof. Necessity follows immediately because Lemma 1 implies that Πm ≤ 0 and the premise

implies that Πm ≥ 0. For sufficiency, notice that, by Lemma 2, m ∈ M\M∗ implies Πm < 0.

Hence, m ∈ M∗. But then,

min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)] = 0

implies that b(y1)− b(y0)− [w(y1)− w(y0)] ≥ 0 for all y0, y1 ∈ Y such that y0 ≤ y1. ■

Theorem 1 serves as a simple and powerful guide for the principal. Maximin optimal

contract-auction pairs feature contracts that are less steep than the principal’s benefit, i.e.,

contracts whose marginal payment schedule lies below the principal’s marginal benefit of the

outcome. Such contracts ensure that the principal pays less than she benefits for any possible

outcome improvement. An important subclass of contracts that satisfy this condition is the

class of linear contracts, which pay a fixed fraction of the principal’s benefit. Thus, Theorem

1 shows that linear contract-auction pairs are optimal.

Corollary 1. Πm = 0 for any m = (w, a) ∈ M∗ such that w = α · b with α ∈ [0, 1].

In fact, linear contract-auction pairs are optimal and offer the principal a non-negative

payoff guarantee even under a relaxation of Assumption II that only requires that the con-

tracted agent improve the outcome in expectation, rather than almost surely. Appendix B

states the assumption and proves this result.

Contract-auction pairs with zero payoff guarantees are sound investments for the principal.

At worse, the principal ends up as well-off as she would have been had she not issued and

sold the incentive contract. However, if P∗ is misspecified, then one cannot assert that the

show that Πm < 0 for all m ∈ M \M∗, consider the following two cases. First, let w(y) = 0 for all y ∈ Y.
Since b is strictly increasing, b(y1) − b(y0) − w(y1) < 0 for any (y0, y1) ∈ Y × Y such that y1 < y0. Second,
let w(y) > 0 for some y ∈ Y. In this case, y0 = y1 = y implies that b(y1)− b(y0)− w(y1) = −w(y) < 0. We
conclude that Πm < 0.
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principal’s expected payoff, EP[Πm], exceeds the payoff guarantee, Πm. In particular, we take

issue with Assumption I because it places a seemingly ad-hoc requirement on the auction’s

revenue performance. Recall that P satisfies Assumption I for (w, a) ∈ M if auction a yields

an expected revenue that (weakly) exceeds EP[Dm · w(Y 0)]. When can the principal expect

it to hold? We will show that Assumption I is warranted when either the principal or agents

know about the contract’s expected baseline payment, EP[w(Y
0) |Dm = 1].

1.3.1 Reserve Prices

Consider a contract w such that the principal knows EP[w(Y
0) |Dm = 1]. If she sold this

contract using a reserve price of EP[w(Y
0) |Dm = 1], she would secure a selling price that

exceeds this price. Formally, if auction a ∈ A has a reserve price of r ≥ 0, then, for all

m = (w, a) ∈ W × {a}, P(Rm ≥ Dm · r) = 1. It follows that P satisfies Assumption I

for all contract-auction pairs (w, a) such that the auction has a reserve price of at least

EP[w(Y
0) |Dm = 1]. Proposition 1 proves this.

Proposition 1. P satisfies Assumption I for all m = (w, a) ∈ M such that auction a has a

reserve price of r ≥ EP[w(Y
0) |Dm = 1].

Proof. If P(Dm = 1) = 0, the result follows immediately. Otherwise,

EP[Rm −Dm · w(Y 0)] ≥ EP[Dm · (r − w(Y 0))]

= P(Dm = 1)(r − EP[w(Y
0) |Dm = 1])

≥ 0.

■

1.3.2 First-price auction with Informed Agents

What if the principal does not know EP[w(Y
0) |Dm = 1], but agents do? In this sec-

tion, we assume that agents are risk-neutral, and we consider a principal who knows that

EP[w(Y
0) |Dm = 1] is common knowledge among agents. We show in Proposition 2 that the

first-price auction achieves a revenue that exceeds EP[w(Y
0) |Dm = 1] in pure strategy Bayes

Nash equilibria. To state and prove this result, we first describe the auction as a game of

incomplete information.

Suppose the principal sells contract w using the first-price (sealed-bid) auction. Agents are

the auction’s bidders. They are risk-neutral, maximize expected utility, and have quasilinear

preferences over the incentive contract and money. Their values of the incentive contract lie

in set V = [0, v]. At the start of the auction, agents place bids in set B = [0, b]. The agent

with the highest bid obtains the incentive contract. If multiple agents place the highest bid,
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the contract is awarded (uniformly) at random among them.3 The agent who obtains the

contract pays the amount she bid to the principal; others pay zero. This selling price is the

auction’s revenue.

Agents have private information about the value of the contract. This information

is diverse and may include, for example, the beliefs of agents about the relationship be-

tween various input combinations and the effect on the outcome or beliefs about input

prices. We refer to agents’ private information as signals. An information structure is

I = (S1, . . . ,Sn;µ1, . . . , µn), where Si is the set of signals that agent i can receive, S ≡
S1,× · · · × Sn is the set of signal profiles, and µi ∈ ∆(Vn × S) is agent i’s belief about the
distribution of value and signal profiles.4 Every information structure we consider is finite,

meaning that Si is a finite set for all i ∈ {1, . . . , n}. Notice that we do not require consistency

across agents’ beliefs in the form of a common prior.

An information structure has full pooled support if for every s ∈ S, there exists i ∈
{1, . . . , n} such that µi(Vn, s) > 0.

An information structure has a common low value of EP[w(Y
0) |Dm = 1] if EP[w(Y

0) |Dm =

1] is common knowledge among agents and constitutes a lower bound of every agent’s ex-

pected value of the contract: EP[w(Y
0) |Dm = 1] ∈ si for all si ∈ Si and i ∈ {1, . . . , n}, and

for every s ∈ S such that µi(Vn, s) > 0,∫
Vn

vi
µi(dv, s)

µi(Vn, s)
≥ EP[w(Y

0) |Dm = 1].

Given information structure I, a strategy for agent i is σi : Si 7→ ∆(B). If σi is a pure

strategy, we abuse notation and let σi(si) ∈ B denote the bid placed by agent i with type

si ∈ Si. Agent i’s ex-ante expected payoff from a strategy profile σ = (σ1, . . . , σn) is:

ui(σ; I) =
∫
v∈Vn,s∈S

∫
b∈Bn

qi(b)(vi − bi)σ1(db1 | s1) · · ·σn(dbn | sn)µi(dv, ds).

where q : Bn 7→ ∆({1, . . . , n}) is the first-price auction’s allocation rule. That is, q(b) =

(q1(b), . . . , qn(b)), where

qi(b) =
1{bi = maxj bj}
| argmaxj bj|

.

Strategy profile σ is a Bayes Nash Equilibrium under information structure I if, for every

agent i and strategy σ̃i, ui(σ; I) ≥ ui(σ̃i, σ−i; I).
Armed with this setup, we can state and prove the main result of this section: that

pure strategy Bayes Nash equilibria of the first-price auction of an incentive contract w

3The specific rule used to allocate the object among many high bidders is inconsequential to our results.

4∆(X ) is the set of probability measures defined over the Borel σ-algebra on set X .
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yield revenues that exceed the contract’s expected baseline payment, EP[w(Y
0) |Dm = 1],

across information structures that have full pooled support and have a common low value of

EP[w(Y
0) |Dm = 1].

Proposition 2. Consider an information structure I that has full pooled support and has a

common low value of EP[w(Y
0) |Dm = 1]. If σ is a pure strategy Bayes Nash equilibrium of

the first-price auction under I, then maxi∈{1,...,n} σi(si) ≥ EP[w(Y
0) |Dm = 1] for all s ∈ S.

Proof. Fix a signal profile s = (s1, . . . , sn) ∈ S and an agent i ∈ {1, . . . , n} such that

µi(Vn, s) > 0. This agent exists because I has full pooled support. Let σ be a strategy

profile such that

max
i∈{1,...,n}

σi(si) < EP[w(Y
0) |Dm = 1].

We will show that σ is not a Bayes Nash equilibrium. Define

µi(s̃−i | si) ≡
µi(Vn, si, s̃−i)∑

s′−i∈S−i
µi(Vn, si, ds′−i)

and µi(Ṽ | si, s̃−i) ≡
µi(Ṽ , si, s̃−i)

µi(Vn, si, s̃−i)

for all s̃−i ∈ S−i and every Borel set Ṽ ⊆ Vn, and let Sm
−i(bi) be the set of i’s competitor

signal profiles such that bid bi ∈ B is the highest bid along with m ∈ {0, . . . , n− 1} others:

Sm
−i(bi) =

{
s̃−i ∈ S−i : bi ≥ max

j ̸=i
σj(s̃j) and

∣∣∣{j ∈ {1, . . . , n} \ {i} : σj(s̃j) = bi
}∣∣∣ = m

}
.

This decomposition of competitors’ signals allows us to write agent i’s expected payoff from

bid bi ∈ B conditional on signal si as:

n−1∑
m=0

1

m+ 1

∑
s̃−i∈Sm

−i(bi)

µi(s̃−i | si)
[∫

v∈Vn

(vi − bi)µi(dv | si, s̃−i)

]
.

We will devise profitable deviations from σi(si) on the basis of agent i’s beliefs about others’

signals.

Case 1: µi(s̃−i | si) = 0 for all s̃−i ∈
⋃n−1

m=0 Sm
−i(σi(si)). In this case, agent i believes

her bid σi(si) never wins the auction. She could do better than that. Suppose that, under

signal si, she deviates to bid bi ∈ (maxj σj(sj), EP[w(Y
0) |Dm = 1]). If others’ signals equal

s−i, an event that occurs with probability µi(s−i | si) > 0 according to i, agent i wins the

auction, pays less than EP[w(Y
0) |Dm = 1] for the contract and values the contract above

EP[w(Y
0) |Dm = 1] in expectation. It follows that this deviation is profitable.
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Case 2: µi(s̃−i | si) > 0 for some s̃−i ∈
⋃n−1

m=1 Sm
−i(σi(si)). In this case, agent i thinks

her bid may be a winning bid that ties with her competitors’. If she deviates from σi(si) to

σi(si) + ϵ, where ϵ > 0 is small enough that

S0
−i(σi(si) + ϵ) =

n−1⋃
m=0

Sm
−i(σi(si)),

the change in agent i’s expected payoff equals

∑
s̃−i∈S0

−i(σi(si)+ϵ)

µi(s̃−i | si)
[∫

v∈Vn

(vi − σi(si)− ϵ)µi(dv | si, s̃−i)

]

−
n−1∑
m=0

1

m+ 1

∑
s̃−i∈Sm

−i(σi(si))

µi(s̃−i | si)
[∫

v∈Vn

(vi − σi(si))µi(dv | si, s̃−i)

]
=−

∑
s̃−i∈S0

−i(σi(si)+ϵ)

ϵ · µi(s̃−i | si)

+
n−1∑
m=1

m

m+ 1

∑
s̃−i∈Sm

−i(σi(si))

µi(s̃−i | si)
[∫

v∈Vn

(vi − σi(si))µi(dv | si, s̃−i)

]
.

This deviation is profitable for agent i if

ϵ <

∑n−1
m=1

m
m+1

∑
s̃−i∈Sm

−i(σi(si))
µi(s̃−i | si)

[∫
v∈Vn(vi − σi(si))µi(dv | si, s̃−i)

]∑
s̃−i∈S0

−i(σi(si)+ϵ) µi(s̃−i | si)
.

Notice that the expression on the right-hand side is well-defined and strictly positive. Indeed,∫
v∈Vn

(vi − σi(si))µi(dv | si, s̃−i) ≥ EP[w(Y
0) |Dm = 1]− σi(si) > 0.

for all s̃−i ∈ S−i.

Case 3 We are left to discuss the case where agent i believes her bid σi(si) can win the

auction with a bid that does not tie with anyone else’s. Formally, suppose that

µi(s̃−i | si) > 0 for some s̃−i ∈ S0
−i(σi(si))

µi(s̃−i | si) = 0 for all s̃−i ∈
n−1⋃
m=1

Sm
−i(σi(si))
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In this case, she can deviate to a lower bid that does not affect her likelihood of winning the

auction. Consider a bid

bi ∈

(
max

s̃−i∈S0
−i(σi(si))

max
j ̸=i

σj(s̃j), σi(si)

)
.

Clearly, Sm
−i(bi) = Sm

−i(σi(si)) for all m ∈ {0, 1, . . . , n − 1}. Therefore, this deviation is

profitable for agent i. ■

Notice it is costless for any contracted agent to induce the counterfactual baseline out-

come, Y 0, and obtain an expected profit of EP[w(Y
0) |Dm = 1]. Since agents are risk-

neutral, they are all willing to pay at least EP[w(Y
0) |Dm = 1] to own the contract, pro-

vided they know this quantity. It follows that any information structure where agents know

EP[w(Y
0) |Dm = 1] has a common low value of EP[w(Y

0) |Dm = 1].

To summarize, the principal’s revenue from a first-price auction of contract w exceeds

EP[w(Y
0) |Dm = 1] to the extent that agents know this quantity, that the corresponding in-

formation structure admits a pure strategy Bayes Nash Equilibrium, and that this equilibrium

concept captures agents’ actual bidding behavior. Proposition 2 offers two practical lessons

for a principal who works under Assumption I. First, the first-price auction is an attractive

selling procedure if the principal believes agents know EP[w(Y
0) |Dm = 1]. Second, it is in the

principal’s interest to have agents share their honest views on EP[w(Y
0) |Dm = 1] prior to the

start of the auction. In other words, the principal should strive to make EP[w(Y
0) |Dm = 1]

common knowledge among agents.
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2 Examples

This section illustrates the model of section 1 with several potential applications.

2.1 Preservation of Natural Habitats

Take the case of a nature conservation organization (the principal) interested in preserving

the rainforest in a well-defined area for an additional year. By the end of the year, the

rainforest is either preserved or not. A key assumption of our model is that the organization

can measure this status. It could do this in various ways, e.g., using image recognition

software on satellite images or manually inspecting the area.

Naturally, there are many possible policies to try and preserve the rainforest, and their

relative effectiveness depends on the circumstances of the land. If the land is private property

and property rights are well-enforced, preservation could be achieved simply by contacting

the owner and offering her an incentive to preserve the rainforest on her property. If the

land is government-owned, effective attempts at preservation should consider the interests

of the relevant government officials. If the land is subject to more elaborate ownership

structures, such as community ownership, the interests of all the relevant stakeholders should

be considered.

A principal who follows the decision process of section 1 need not know about these

circumstances, the set of available policies, or their relative effectiveness at preserving the

rainforest. Rather, she auctions off an incentive contract that pays w ≥ 0 dollars in one year

if the rainforest is preserved and 0 dollars otherwise.

There are two reasons why auctioning off the incentive contract is a good idea. One reason

relies on the classic argument of Coase (1959) regarding auctions’ potential to achieve efficient

allocations. Our analysis does not explore this argument, but the idea is the following. If the

organization allocated the incentive contract to someone far removed from the area under

consideration, her cost of preserving the rainforest would likely be prohibitively high. Instead,

if the organization allocated the contract to someone close to this area, this agent would find

it less costly to do whatever is needed to preserve the rainforest. The former agent is less

likely to preserve the rainforest and receive the incentive contract payment than the latter.

Hence, the former agent values the incentive contract less. Allocating the contract to the

agent who values it the most means allocating it to whoever thinks they have the most

cost-effective intervention to preserve the rainforest.

The second reason to auction off the incentive contract is to secure a good return on the

principal’s investment. Notice that the rainforest could be preserved for an additional year,

with or without an incentive contract. Hence, the principal might pay for preservation that

would have happened even if she did not issue an incentive contract. The point of the auction
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stage in this paper is to rule out this unattractive possibility. Indeed, let p0 be the probability

that the rainforest is preserved absent an incentive contract, and suppose the principal uses

an auction format that allocates the contract with certainty. Under Assumption I, the auction

has an expected revenue that exceeds w · p0, effectively reimbursing the organization for the

contract payments associated with preservation that the contracted agent does not cause.

When should we expect the auction to satisfy such a revenue guarantee? If the organization

knows p0, section 1.3.1 shows that she can impose the guarantee through a reserve price of

w · p0. Instead, if agents know p0, section 1.3.2 shows that agents drive the contract price up

to at least w · p0 in pure strategy Bayes Nash equilibria of the first-price auction. The latter

claim is intuitive: every agent could obtain an expected contract payment of w · p0 without

exerting effort to preserve the rainforest. Hence, every agent’s valuation of the incentive

contract is at least w ·p0. Because this fact is common knowledge, competition among agents

drives the selling price to at least w · p0.
When the incentive contract induces agents to preserve the rainforest, and the auction

has this revenue guarantee, Theorem 1 shows that the principal is guaranteed to benefit from

this scheme as long as the contract pays less than her benefit: w ≤ b. In this case, issuing

and auctioning off the incentive contract is a sound investment for the principal. At worse,

she is left as well-off as she would have been had she not done this, in expectation.

Across existing preservation interventions, the scheme presented in this paper resembles

policies of payments for ecosystem services. Here, the principal — typically a government

agency — offers payments to an agent in exchange for concrete preservation efforts. Such

programs have been implemented in Costa Rica to pay for the preservation of forests and

jungles (Sánchez-Azofeifa, Pfaff, Robalino, and Boomhower 2007); in China, to pay for tree

planting along the slopes of river basins (Pan, Xu, Yang, and Yu 2017); and in Mexico,

to pay for the design and implementation of sustainable development plans in forest lands

(Alix-Garcia, Sims, and Yañez-Pagans 2015). In contrast with these interventions, this paper

has the principal pay for observed preservation outcomes instead of requiring the contracted

agent to take specific actions.

So far, our discussion ignores other costs the organization might incur in practice. Upon

receipt of the contract, the agent might act in ways that go against the organization’s inter-

ests. There might be spillovers, where the agent works to preserve the rainforest but at the

expense of natural habitats in other areas. The agent might use coercion or other violent

means to achieve preservation, a real possibility in regions with precarious institutions.

In section 3.1, we extend the model from section 1 to account for such costs. Briefly, the

approach augments Assumptions I and II with the assumption that contracted agents profit

from their attempts at preserving the rainforest in expectation. This assumption places an

upper bound on the agent’s costs: in a worst-case scenario, it costs the agent w to preserve
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the rainforest. If the organization’s costs are bounded above by the agent’s costs, scaled by

some γ > 0, then at worse, the principal pays w to the agent and incurs γ · w as costs, a

total cost of (1+γ)w. So, the principal obtains a non-negative payoff as long as the incentive

contract pays w ≤ (1 + γ)−1b.

2.2 Reduction of Greenhouse Gas Concentrations

Suppose an environmental organization (the principal) wishes to reduce the monthly average

concentration of greenhouse gases (GHG) in a given section of the atmosphere in a given

month. By the end of the month, the organization observes the realized concentration of

GHG.5 The principal need not know how to effectively improve the air composition in this

area. She may not know the relevant local characteristics to design an effective environmental

policy. Reducing the concentration of greenhouse gases above a densely populated area

and a cattle ranch are different tasks; the interests of local politicians determine whether a

greenhouse gas reduction policy can count on the government’s support.

The organization obtains a monetary-equivalent benefit equal to b(y) if the area’s average

concentration of GHG equals y. For example, third-party estimates of the social cost of

carbon could inform this benefit. To follow the policy choice procedure of section 1, the

environmental organization issues a linear incentive contract that pays its owner a fraction

α ∈ (0, 1) of the organization’s benefit: w(y) = α · b(y).
In this case, Assumption II means that the contracted agent’s actions are not counter-

productive, leading to a worse air composition than would have been achieved without an

incentive contract. Assumption I requires that the auction used by the organization raise

enough money to cover the contract liability in the event that the contracted agent does

nothing to curb GHG concentrations. Suppose the principal uses an auction that allocates

the contract with certainty, that she can accurately assess the concentration of GHG in the

absence of an incentive contract, and that she can determine the expected contract payment

associated with such outcome realizations. Here, she can auction the linear incentive contract

with a reserve price set to this amount. A second approach is for the organization to sell the

incentive contract using the first-price auction. Here, the auction’s revenue would meet the

required guarantee, provided agents knew and agreed about the expected contract payment

they would get if they exerted no effort.

Some of the issues raised by the previous example apply here as well. There could be

5There are many ways to measure the concentration of greenhouse gases. Specialized tools called spec-
trometers often produce the raw data for these measurements. Such tools can be mounted on satellites to
obtain measurements in various locations along their orbit (e.g., NASA’s EMIT mission), or they can be in-
stalled in specific locations to obtain repeated local measurements (e.g. the Total Carbon Column Observing
Network).
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spillovers, meaning that GHG concentration could decrease at the expense of more GHG

emissions elsewhere. The environmental organization could care about social welfare and

allocate the contract to a government office that reduces emissions at a high social cost.

A different issue arises when the contracted agent has limited commitment. Indeed, at

the end of the period, the agent could refuse to pay the environmental organization for the

incentive contract, particularly if the contract selling price exceeds the due contract payment.

In section 3.3, we explore additional assumptions under which alternative arrangements that

eliminate this problem give the organization a non-negative payoff guarantee.

One arrangement has the organization give away the incentive contract for free. Here, the

incentive contract needs to incentivize a sizeable reduction in the concentration of GHG for

the organization to benefit from it. Another arrangement has the organization deduct the

contract’s selling price from her contract payment obligation while guaranteeing the agent a

non-negative transfer. In this case, we show that the organization still obtains a non-negative

payoff guarantee, provided the auction’s revenue guarantee holds almost surely, rather than

in expectation.

2.3 Lobbying

Consider an interest group that intends to repeal a law by the end of a political cycle. Agents

are lobbyists, and, as in example 2.1, the outcome is binary and indicates if the law is repealed

by the end of the cycle. It is easy to measure the outcome, unlike examples 2.1 and 2.2 that

require dedicated measurement technologies.

To achieve its objective, the interest group issues an incentive contract that pays its owner

w ≥ 0 dollars if the law is repealed by the end of the period and auctions it off. Assumption II

requires that the contract induce the contracted lobbyist to improve the probability that the

law is repealed. Notice that the law could be repealed by the end of the cycle even without

an incentive contract or if the contracted lobbyist did nothing to repeal the law. Assumption

I requires that lobbyists bid the contract price up to the expected contract payment in this

baseline course of events.
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3 Extensions

In this section, we extend the model of section 1 in several directions. We propose weak

additional assumptions that allow the principal to design maximin optimal contract-auction

pairs that offer her a non-negative payoff guarantee in the face of various costs categories.

We consider alternative arrangements that eliminate the agent’s obligation to pay for the

incentive contract. One arrangement has the principal give away the incentive contract for

free. In this case, we construct contract-auction pairs that give the principal a non-negative

payoff guarantee under a refined version of Assumption II that requires the agents’ effect on

the outcome to exceed a positive threshold. Another arrangement has the principal deduct

the price of the incentive contract from her contract payment obligation while giving the

agent a money-back guarantee. Here, we characterize maximin optimal contract-auction pairs

under a more robust version of Assumption I that requires the auction’s revenue to exceed

the contract payment in the baseline outcome Y 0 almost surely, rather than in expectation.

Finally, we show how to design optimal contract-auction pairs that limit the principal’s

maximum payment obligation.

3.1 Miscellaneous Costs for the Principal

This section incorporates costs that the principal incurs following his decision to auction off

an incentive contract. For each m ∈ M, let Cp
m be the non-negative random variable that

denotes the principal’s costs from contract-auction pair m. Costs naturally determine the

principal’s payoff, Πnx
m , which is now given by

Πnx
m = b(Ym)− b(Y 0)− [Wm + Cp

m −Rm].

Depending on the application, several cost categories may add up to Cp
m. It is costly

to design an incentive contract and implement an auction. Example 2.1 illustrates that

the contracted agent’s actions can be socially costly or go against the principal’s interests.

Moreover, the incentive contract could be cost-plus, i.e., reimburse a fraction of the contracted

agent’s costs to produce outcome Ym.

Notice that assumptions I and II do not restrict the principal’s costs Cp
m. Hence, they are

insufficient to produce finite payoff guarantees: the set {EP [Π
nx
m ] : P ∈ P∗} does not have

a lower bound. To make progress, we need more assumptions. In this section, we charac-

terize the set of maximin optimal contract-auction pairs (which have a non-negative payoff

guarantee) under two additional assumptions. The assumptions require that the contracted

agent profit, or at least not lose money, from the actions she takes to improve the outcome

and profit from the incentive contract and that the agent’s costs exceed the principal’s costs,
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scaled by some γ > 0. Intuitively, if the agent makes a non-negative expected profit from

the incentive contract, her costs cannot exceed the additional incentive contract payment

brought about by her actions, in expectation. So, if the agent’s costs place an upper bound

on the principal’s costs, the principal can design the incentive contract to control the costs

she would incur in a worst-case scenario.

Concretely, fix γ > 0 and let Ca
m be the non-negative random variable that denotes the

costs incurred by the contracted agent to produce outcome Ym, under contract-auction pair

m ∈ M. The principal and the agents incur costs only if the principal actually sells the

contract, so Dm = 0 implies that Ca
m = Cp

m = 0. Consider the following assumptions.

Assumption III. EP [Wm −Dmw(Y
0)− Ca

m] ≥ 0.

Assumption IV. EP [γ · Ca
m − Cp

m] ≥ 0.

P ∈ P satisfies Assumption III for m ∈ M if the contracted agent profits from her efforts

to influence the outcome and obtain a better contract payment, in expectation. Alterna-

tively, P satisfies Assumption III for m if the contracted agent knows enough about actions

detrimental to the outcome to not make counterproductive choices, in expectation. In turn,

P ∈ P satisfies Assumption IV for m ∈ M if the principal’s expected cost is bounded above

by that of the agent, scaled by γ.

The principal imposes assumptions I, II, III and IV for contract-auction pairs in M∗, so

that the set of admissible probability measures is Pnx, where

Pnx ≡ {P ∈ P : P satisfies assumptions I, II, III and IV for all m ∈ M∗}.

Her payoff guarantee is then Πnx
m , where

Πnx
m =

 infP∈Pnx EP [Π
nx
m ] if {EP [Π

nx
m ] : P ∈ Pnx} has a lower bound

−∞ otherwise.

Proposition 3 characterizes the set of contract-auction pairs that offer the principal a non-

negative payoff guarantee and shows that such pairs are also maximin optimal. Appendix A

collects the proof, which proceeds as in Lemmas 1 and 2 and Theorem 1.

Proposition 3.

Πnx
m =

 min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)] if m ∈ M∗

−∞ otherwise,
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and Πnx
m = 0 if and only if m = (w, a) ∈ M∗ and, for all y0, y1 ∈ Y such that y0 ≤ y1,

(1 + γ)[w(y1)− w(y0)] ≤ b(y1)− b(y0).

When the agent’s costs bound those of the principal, contract-auction pairs that offer

the principal a non-negative payoff guarantee feature a contract payment schedule whose

slope is uniformly lower than that of the principal’s benefit, scaled down by (1 + γ)−1. The

idea behind this result is the following. Take a contract-auction pair m ∈ M∗. Under

Assumption I, the worst-case scenario that the principal deems possible is one where the

auction exactly reimburses the principal for the baseline contract payment, EP [Dmw(Y
0)].

In this case, the principal’s expected payoff amounts to her benefit, EP [b(Ym)−b(Y 0)], minus

the contract payments net of the auction’s revenue, EP [w(Ym)−w(Y 0)], minus her additional

costs, EP [C
p
m]. By Assumption IV, these additional costs are bounded above by the agent’s

costs, scaled by γ. Moreover, by Assumption III, the agent’s costs are bounded above by her

benefit from the incentive contract. So, the principal’s expected costs are bounded above

by E[γ · (w(Ym)− w(Y 0))] and, in a worst possible scenario, the principal incurs total costs

equal to (1+γ) ·E[w(Ym)−w(Y 0)]. Under Assumption II, the incentive contract induces the

contracted agent to improve the outcome. Thus, the worst possible payoff for the principal

corresponds with the lowest payoff obtained by looking across all outcome improvements,

which equals

min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)].

So, the principal obtains a non-negative payoff guarantee if she obtains a non-negative payoff

for every possible outcome improvement. She achieves this when the slope of the contract

payment schedule is always below that of the principal’s benefit from the outcome, scaled

down by (1 + γ)−1.

3.2 Cost of Funds

Suppose the principal finds that raising funds to make contract payments is costly. In Laffont

and Tirole (1987) and Laffont and Tirole (1986), these costs arise because the principal is a

social planner who can only obtain funds in ways that bring about real resource costs. Let

λ > 0 denote the principal’s cost of raising a dollar. We assume that the principal knows

this cost. Her ex-post payoff from contract-auction pair m ∈ M is then Πcf
m , where

Πcf
m = b(Ym)− b(Y 0)− (1 + λ)[Wm −Rm].
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Under Assumptions I and II, the principal’s payoff guarantee is Πcf
m , where

Πcf
m =

 infP∈P∗ EP [Π
cf
m ] if {EP [Π

cf
m ] : P ∈ P∗} has a lower bound

−∞ otherwise.

Proposition 4, proven in Appendix A, mirrors Lemmas 1 and 2 and Theorem 1 and adapts

them to this situation.

Proposition 4.

Πcf
m =


min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− (1 + λ)[w(y1)− w(y0)] if m ∈ M∗

min
(y0,y1)∈Y×Y

b(y1)− b(y0)− (1 + λ)w(y1) otherwise,

and Πcf
m = 0 if and only if m = (w, a) ∈ M∗ and, for all y0, y1 ∈ Y such that y0 ≤ y1,

(1 + λ)[w(y1)− w(y0)] ≤ b(y1)− b(y0).

In particular, a contract-auction pair m = (w, a) ∈ M∗ such that w = α · b with α ∈
[0, (1 + λ)−1] is maximin optimal and offers the principal a non-negative payoff guarantee.

This result is intuitive: for every dollar worth of benefit, the principal pays α dollars, scaled

up by her costs of raising the money, a total of α(1+λ). If P∗ is well-specified, she can obtain

a non-negative payoff provided that her remaining benefit, 1−α(1+λ), is non-negative, which

occurs whenever α ≤ (1 + λ)−1.

3.3 Limited Commitment

Recall that, at the end of the time period, the agent who won the auction pays the prin-

cipal for the incentive contract, and the principal pays the agent according to the contract

terms and the outcome realization. So far, our discussion has ignored potential commitment

problems: after the outcome realization, each party could attempt to change the contract

terms, or downright refuse to pay. Naturally, the relevance of such problems is context-

specific. Decarolis (2014) studies a procurement setting where such commitment problems

are empirically relevant.

This section studies two arrangements that eliminate the agent’s commitment problem

and inspects the consequences of the principal’s commitment problem. In the first arrange-

ment, the principal gives the incentive contract to an agent free of charge. In the second

arrangement, the principal deducts the selling price of the incentive contract from her contract

payment obligation but guarantees the agent a non-negative net transfer. For each arrange-
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ment, we propose additional assumptions that the principal can make, and we characterize

the set of maximin optimal contract-auction pairs, which feature non-negative payoff guaran-

tees. When agents believe the principal cannot commit to pay for the incentive contract, they

may expect to obtain a payment below EP[w(Y
0) |Dm = 1] if they were to exert no effort.

Hence, the first-price auction no longer has a revenue guarantee equal to EP[w(Y
0) |Dm = 1],

even if agents know this quantity.

3.3.1 Free Contracts

A simple way to eliminate the agent’s commitment problem is to dispel the commitment.

To do this, the principal could give the contract away for free. Although extreme, handing

out incentive contracts for free is a common practice. Pharmaceutical companies did not

pay to participate in the advance market commitment that targeted the production of a

pneumococcal conjugate vaccine (M. Kremer, Levin, and Snyder 2020), and procurement

contracts are often awarded to interested parties for free (Bajari and Tadelis 2001).

Suppose the principal is interested in contract-auction pairs such that the agent who

wins the auction does not pay for the contract. Of course, such contract-auction pairs are

inconsistent with Assumption I. So, in this case, the principal only imposes Assumption II

for a subset of contract-auction pairs Mfc ⊂ M with the property that m ∈ Mfc implies

that P (Rm = 0) = 1 for all P ∈ P . The set of probability measures she considers is then

Pfc, where

Pfc ≡ {P ∈ P : P satisfies Assumption II for all m ∈ Mfc},

and her payoff guarantee from a given contract-auction pair m ∈ M is Πfc
m , where

Πfc
m =

 infP∈Pfc EP [Πm] if {EP [Πm] : P ∈ Pfc} has a lower bound

−∞ otherwise.

The following lemma characterizes the principal’s payoff guarantee. Its proof is in Ap-

pendix A and proceeds as in Lemmas 1 and 2.

Lemma 3.

Πfc
m =


min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− w(y1) if m ∈ Mfc

min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1) otherwise.

It follows from Lemma 3 that for all m ∈ Mfc, Πfc
m ≤ 0, and Πfc

m = 0 if and only if

w(y) = 0 for all y ∈ Y .6 Intuitively, because Assumption I is absent, the auction’s revenue

6Fix m = (w, a) ∈ Mfc. If y0 = y1, then b(y1) − b(y0) − w(y1) = −w(y1) ≤ 0. Hence, Πfc
m ≤ 0. Next,
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is only constrained to be non-negative. But then, for any given contract-auction pair, a

probability measure such that Ym = Y 0, Rm = 0, and Y 0 > 0 almost surely has the principal

pay for an outcome realization that would have occurred had she not issued or sold the

contract. Such a probability measure gives the principal a strictly negative payoff, except

when w is the zero contract. Hence, the principal’s revenue guarantee is strictly negative for

all contracts that pay positive amounts.

The principal must make different assumptions to obtain a non-negative payoff guarantee

for such contracts. In this section, we explore a stronger version of Assumption II, requiring

that the causal effect of contract-auction pairs in Mfc on the principal’s benefit from the

outcome be bounded below by some c > 0. This assumption gives rise to the set of probability

measures Pfc(c), given by

Pfc(c) ≡ {P ∈ P : P (b(Y 1
m)− b(Y 0) ≥ c) = 1 for all m ∈ Mfc},

and a payoff guarantee Πfc
m (c) for each m ∈ M, where

Πfc
m (c) =

 infP∈Pfc(c) EP [Πm] if {EP [Πm] : P ∈ Pfc(c)} has a lower bound

−∞ otherwise.

Lemma 4 characterizes the principal’s payoff guarantee in these circumstances.

Lemma 4.

Πfc
m (c) =


min

{
0, min

{(y0,y1)∈Y×Y:b(y1)−b(y0)≥c}
b(y1)− b(y0)− w(y1)

}
if m ∈ Mfc

min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1) otherwise.

With the tractable description of the payoff guarantee from Lemma 4, we can characterize

the class of contracts that yield a non-negative payoff guarantee.

Proposition 5. Πfc
m (c) ≥ 0 if and only if m ∈ Mfc and w(y) ≤ c for all y ∈ Y such that

y ≥ b−1(c+ b(y)).

Proposition 5, proven in Appendix A, conveys a simple message. If the principal does

not charge money for the incentive contract, then her contract payment obligation must not

exceed the benefit she gets from the outcome improvement that the contract induces. A

contract-auction pair m = (w, a) is a sound investment if P(b(Y 1
m)− b(Y 0) ≥ c) = 1 and the

contract pays less than c for any outcome realization.

w = 0 implies that Πfc
m = 0, since b is strictly increasing. Finally, Πfc

m = 0 implies that, for all y ∈ Y,
0 = Πfc

m ≤ b(y)− b(y)− w(y) = −w(y) so that w(y) = 0, since w is non-negative.
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3.3.2 Money-back Guarantee for Agents

Another way that the principal can address the agent’s commitment problem is by offering

her a non-negative net transfer. Recall that the arrangement we have studied thus far involves

two transactions. The contracted agent purchases the contract from the principal, and the

principal issues contract payments to the agent after the outcome realization. In this section,

we study an alternative arrangement whereby the agent who wins the auction does not

transfer Rm dollars to the principal, and the principal transfers Wm − Rm dollars to the

agent after the outcome realization if Wm − Rm > 0, and does not transfer any money

otherwise. As in section 3.3.1, the principal eliminates the agent’s commitment problem by

removing the agent’s payment obligation. Unlike section 3.3.1, however, the principal does

charge the agent for the incentive contract: she deducts the selling price of the incentive

contract from her contract payments. Because the principal never deducts so much as to

have the agent owe her money, she guarantees the agent a non-negative net transfer.7 So,

the principal’s ex-post benefit from contract-auction pair m is Πmb
m , given by

Πmb
m = b(Ym)− b(Y 0)−max{0, Wm −Rm}.

Assumptions I and II cannot guarantee the principal a non-negative payoff. To see this,

consider the following.

Example For a given contract-auction pair, consider the following unfavorable scenario.

The contracted agent does not influence the outcome, and the auction satisfies the expected

revenue guarantee: with equal probability, the contract sells for double the contract’s ex-

pected baseline payment, or it sells for a price of zero. To achieve an expected payoff of zero,

the principal would have to collect all of the contract’s selling price when the contract sells

for a positive price. But under the current arrangement, she can only collect half of this

price. Hence, her expected payoff is negative even though Assumptions I and II hold.

Formally, fix a contract-auction pair m = (w, a) ∈ M such that contract w is not iden-

tically equal to zero. Now consider a probability measure P ∈ P , where P (Y 1
m = Y 0, Dm =

1) = 1, P (Rm = 0) = P (Rm = 2 · w(Y 0)) = 0.5, and EP [w(Y
0)] > 0. Suppose that Y 0 and

7Strictly speaking, contract-auction-specific variables differ in this alternative arrangement relative to the
setting where agents commit to pay for the contract. For example, the contracted agent might produce
different outcomes under each arrangement, even if she held the same contract. To keep the notation simple,
we reinterpret the model’s variables. Before, Ym referred to the outcome induced by contract-auction pair m
when agents committed to pay for the contract. Now, it refers to the induced outcome in a situation where
the principal offers the contracted agent a non-negative net transfer.
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Rm are independent, so that

P (Y 0 ∈ Y0, Rm ∈ R) = P (Y 0 ∈ Y0) · P (Rm ∈ R)

for all Borel sets Y0 ⊆ Y and R ⊆ R+. P clearly satisfies Assumption II for m. It also

satisfies Assumption I for m, since

EP [Rm−Dmw(Y
0)] =

1

2
EP [Rm |Rm = 2 ·w(Y 0)]−EP [w(Y

0)] = EP [w(Y
0)]−EP [w(Y

0)] = 0.

However, the principal’s expected payoff is strictly negative:

EP [Π
mb
m ]

=− EP [max{0, Wm −Rm}]

=− 1

2
EP [max{0, w(Y 0)−Rm} |Rm = 0]− 1

2
EP [max{0, w(Y 0)−Rm} |Rm = 2 · w(Y 0)]

=− 1

2
EP [w(Y

0)]− 1

2
EP [max{0, −w(Y 0)}]

=− 1

2
EP [w(Y

0)]

< 0.

To obtain a non-negative payoff guarantee, the principal must make stronger assumptions.

We could construct the previous example because, under Assumption I, the auction’s revenue

exceeds the contract’s baseline payment, but only in expectation. We now consider the

following refinement of Assumption I:

Assumption I’. P (Rm −Dm · w(Y 0) ≥ 0) = 1.

Assumption I’ strengthens Assumption I by requiring that the auction’s revenue exceed

the contract’s baseline payment almost surely, rather than in expectation. The principal

imposes Assumptions I’ and II for contract-auction pairs that lie in M∗ ⊂ M. Thus, she

considers probability measures that lie in Pmb, where

Pmb ≡ {P ∈ P : P satisfies Assumptions I’ and II for all m ∈ M∗}.

Her payoff guarantee from a given contract-auction pair m ∈ M is Πmb
m , where

Πmb
m =

 infP∈Pmb EP [Π
mb
m ] if {EP [Π

mb
m ] : P ∈ Pmb} has a lower bound

−∞ otherwise.

The following lemma shows that the refinement of Assumption I allows the principal
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to recover the same payoff guarantee she obtained when agents committed to pay for the

contract. We prove it in Appendix A.

Lemma 5.

Πmb
m =


min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− [w(y1)− w(y0)] if m ∈ M∗

min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1) otherwise.

Under Assumption I’, the auction’s revenue equals the contract’s baseline payment in a

worst-case scenario. On the other hand, Assumption II requires that the contract induces an

outcome improvement. Because contracts’ payment schedules are non-decreasing, the prin-

cipal’s contract payment obligation must exceed the auction’s revenue. Hence, the principal

effectively appropriates the total selling price of the contract in a worst-case scenario, even

if agents cannot commit to paying for it. For this reason, the principal achieves the same

revenue guarantee as in our baseline case with full commitment.

As in Theorem 1, contract-auction pairs that give the principal a non-negative payoff guar-

antee feature contracts whose marginal payment schedule is below the principal’s marginal

benefit from the outcome. Proposition 6 establishes this result.

Proposition 6. Πmb
m = 0 if and only if m = (w, a) ∈ M∗ and, for all y0, y1 ∈ Y such that

y0 ≤ y1,

b(y1)− b(y0) ≥ w(y1)− w(y0).

The arguments in favor of Assumption I from sections 1.3.1 and 1.3.2 also support As-

sumption I’, even though Assumption I’ is stronger than Assumption I. Namely, if the prin-

cipal knows the contract’s expected baseline payment, EP[w(Y
0) |Dm = 1], then she can

design an auction whose revenue meets or exceeds this quantity almost surely if she sets it

as a reserve price. Instead, suppose the contract’s expected baseline payment is common

knowledge among agents. Every agent can obtain an expected contract payment equal to

EP[w(Y
0) |Dm = 1], so that this quantity is a commonly known lower bound of all agents’

willingness to pay for the contract. Here, Proposition 2 shows that the first-price auction’s

revenue exceeds the contract’s expected baseline payment in pure strategy Bayes-Nash equi-

libria.

3.3.3 Principal Commitment Problems

What if the principal herself cannot commit to making contract payments? It is helpful

to distinguish between the principal’s contract payment obligation and the actual contract

payment. Denote the principal’s actual contract payment under contract-auction pairm with
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the non-negative random variable W pc
m . Since the principal may not fully pay her obligation,

W pc
m ≤ Wm.

To simplify the notation, we do not redefine the principal’s payoff-relevant random vari-

ables, (Y 1
m, Dm, Rm). Section 1 defined these contract-auction-specific outcomes in a context

where the principal fully committed to the contract terms. Here, they differ to the extent

that agents detect the principal’s lack of commitment. So, the principal’s ex-post payoff from

contract-auction pair m ∈ M is Πpc
m, given by

Πpc
m = b(Ym)− b(Y 0)− [W pc

m −Rm],

and her payoff guarantee under Assumptions I and II is Πpc
m, where

Πpc
m =

 infP∈P∗ EP [Π
pc
m] if {EP [Π

pc
m] : P ∈ P∗} has a lower bound

−∞ otherwise.

Since W pc
m ≤ Wm for all m ∈ M, it is straightforward to show that Lemmas 1 and 2 and

Theorem 1 extend to this situation. Proposition 7 summarizes.

Proposition 7.

Πpc
m =


min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− [w(y1)− w(y0)] if m ∈ M∗

min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1) otherwise,

and Πpc
m = 0 if and only if m = (w, a) ∈ M∗ and, for all y0, y1 ∈ Y such that y0 ≤ y1,

w(y1)− w(y0) ≤ b(y1)− b(y0).

The difficulty that the principal’s limited commitment raises is that Assumption I is

harder to justify. Concretely, the first-price auction need not induce a selling price that

matches or exceeds the contract’s expected baseline payment, EP[w(Y
0) |Dm = 1], even

if agents know this quantity. Before, every agent could obtain an expected payment of

EP[w(Y
0) |Dm = 1], even if they did not attempt to influence the outcome. For this reason,

equilibrium behavior had agents bid the contract price up to or beyond this quantity. Now,

the agents’ expected baseline payment is lower, because agents believe the principal may not

honor her obligations. Hence, EP[w(Y
0) |Dm = 1] is no longer a commonly known lower

bound on agents’ willingness to pay for the contract, and the contract’s equilibrium selling

price could be lower than EP[w(Y
0) |Dm = 1]. In an extreme case where agents believe the

principal does not make any contract payments, the contract is worthless, does not sell for a
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positive price, and fails to improve the outcome.

3.4 Limited Liability

A practical drawback of the simple, linear contracts of the form w(y) = αb(y) is that the

principal cannot control how much she will owe at the end of the period. In this section,

we assume that the principal is willing or able to spend at most w ≥ 0 dollars in contract

payments.

Theorem 1 immediately applies to this circumstance. Indeed, for any contract w ∈ W
such that w(y1) − w(y0) ≤ b(y1) − b(y0) for all y0 ≤ y1, the contract wll defined as wll(y) =

min{w(y), w} features a maximum liability of w, and satisfies wll(y1)−wll(y0) ≤ b(y1)−b(y0)

for all y0 ≤ y1. So, any contract-auction pair (wll, a) ∈ M∗ features a non-negative payoff

guarantee and is maximin optimal. The following Corollary of Theorem 1 summarizes.

Corollary 2. Let w ∈ W be such that w(y1)−w(y0) ≤ b(y1)− b(y0) for all y0, y1 ∈ Y where

y0 ≤ y1 and define a limited liability contract wll(y) = min{w(y), w}. Πm = 0 for all a ∈ A
such that m = (wll, a) ∈ M∗.
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4 Conclusion

In this paper, a decision-maker called the principal goes about improving a valuable, measur-

able outcome by selling a contract that pays its holder according to the outcome realization.

I showed that this scheme is guaranteed to benefit her, provided the contract induces the

contractor to improve the outcome and the selling price is high enough to cover the contract

payment for baseline outcomes that would have happened in case the contractor did nothing

to improve the outcome. To secure this selling price, the principal can set a reserve price

if she knows the expected contract payment in the baseline outcome. Instead, if potential

contractors know this quantity and are risk-neutral, the principal can achieve this price if

she sells the contract using a first-price auction.

The principal can implement this scheme even if she faces severe information constraints.

She may ignore the relative cost-effectiveness of different policies or interventions. Indeed, she

may even ignore which policies or interventions are available. She need not know the poten-

tial contractors’ preferences or informational constraints beyond that the incentive contract

induces them to improve the outcome.

Moreover, I proposed weak additional assumptions under which the principal continues

to obtain a guaranteed benefit from the scheme in the face of complications that may arise

in practice. In these situations, the principal incurs various additional costs, and contractors

cannot be trusted to pay for the incentive contract.

Overall, the scheme is flexible enough to be useful for real-world applications. I took a

special interest in those concerned with environmental objectives, e.g., the preservation of

natural habitats or the reduction in the concentration of greenhouse gases in the atmosphere.
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A Omitted Proofs

PROOF OF LEMMA 1 Let m ∈ M∗. For any P ∈ P∗, it follows that:

EP [Πm] = EP [b(Ym)− b(Y 0)− [Wm −Rm]]

≥ EP [b(Ym)− b(Y 0)−Dm[w(Ym)− w(Y 0)]],

since P satisfies Assumption I for m.

By the potential outcomes model (1), if P (Dm = 1) = 0, then

EP [Πm] ≥ EP [b(Ym)− b(Y 0) |Dm = 0] = EP [b(Y
0)− b(Y 0) |Dm = 0] = 0.

Otherwise,

EP [Πm] ≥ P (Dm = 1)EP [b(Y
1
m)− b(Y 0)− [w(Y 1

m)− w(Y 0)] |Dm = 1]

≥ P (Dm = 1) min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)],

where the second inequality holds because P satisfies Assumption II and b is strictly increas-

ing, and the minimum exists because Y is compact and b and w are continuous.

Since

min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)] ≤ 0,

we conclude that

EP [Πm] ≥ min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)].

Next, consider P̃ ∈ P such that P̃ (Dm̃ = 1, Rm̃ = Dm̃w(Y
0), Y 1

m̃ = y
1
, Y 0 = y

0
) = 1 for

all m̃ ∈ M, where(
y
1
, y

0

)
∈ argmin

{(y0,y1)∈Y2:y0≤y1}
b(y1)− b(y0)− [w(y1)− w(y0)].

Clearly, P̃ satisfies Assumptions I and II for all contract-auction pairs in M∗, so P̃ ∈ P∗.

Moreover,

EP̃ [Πm] = b(y
1
)− b(y

0
)− [w(y

1
)− w(y

0
)].

It follows that

Πm = min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)].

■
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PROOF OF LEMMA 2 Let m ∈ M \M∗. For any P ∈ P∗, we have that

EP [Πm] = EP [b(Ym)− b(Y 0)− [Wm −Rm]]

≥ EP [b(Ym)− b(Y 0)−Dmw(Ym)],

since Rm is non-negative, so that EP [Rm] ≥ 0. By the potential outcomes model (1),

EP [Πm] ≥ 0 if P (Dm = 1) = 0. If instead P (D = 1) > 0, then

EP [Πm] ≥ P (Dm = 1)EP [b(Y
1
m)− b(Y 0)− w(Y 1

m) |Dm = 1]

≥ P (Dm = 1) min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1).

The minimum exists because Y is compact, and b and w are continuous. Since w is non-

negative, min(y0,y1)∈Y×Y b(y1)− b(y0)− w(y1) ≤ 0. We conclude that

EP [Πm] ≥ min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1).

Next, consider P̃ ∈ P∗ such that P̃
(
Dm = 1, Rm = 0, Ym = ỹ1, Y 0 = y

0

)
= 1, where

(
ỹ1, y

0

)
∈ argmin

(y0,y1)∈Y×Y
b(y1)− b(y0)− w(y1).

Such P̃ exists because m /∈ M∗, so that P̃ need not satisfy assumptions I or II for m. Since

EP̃ [Πm] = min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1),

we have that Πm = min(y0,y1)∈Y×Y b(y1)− b(y0)− w(y1). ■

PROOF OF PROPOSITION 3 First, let m ∈ M∗, fix P ∈ Pnx and notice that

EP [Π
nx
m ] ≥ EP [b(Ym)− b(Y 0)−Dm(w(Ym) + Cp

m − w(Y 0))]

≥ EP [b(Ym)− b(Y 0)−Dm(w(Ym) + γ · Ca
m − w(Y 0))]

≥ EP [b(Ym)− b(Y 0)− (1 + γ)Dm(w(Ym)− w(Y 0))],
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where the inequalities follow because P satisfies assumptions I, IV and III for m, respectively.

If P (Dm = 1) = 0, then EP [Π
nx
m ] ≥ 0. Otherwise,

EP [Π
nx
m ] ≥ P (Dm = 1)EP [b(Ym)− b(Y 0)− (1 + γ)(w(Ym)− w(Y 0)) |Dm = 1]

≥ P (Dm = 1) min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)]

≥ min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)],

since P satisfies Assumption II for m. Next, consider a probability measure P̃ ∈ P such that

P̃
(
Dm̃ = 1, Rm̃ = Dm̃w(Y

0), Cm̃ = Dm̃(w(Y
1
m̃)− w(Y 0)), Y 1

m̃ = y
1
, Y 0 = y

0

)
= 1,

where

(y
0
, y

1
) ∈ argmin

(y0,y1)∈Y×Y:y0≤y1

b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)]

for all m̃ ∈ M. Clearly, P̃ satisfies assumptions I, II and III for all m̃ ∈ M∗, so that P̃ ∈ Pnx.

Hence,

Πnx
m = min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)].

Next, consider some m ∈ M\M∗. We will show that {EP [Π
nx
m ] : P ∈ P∗} does not have

a lower bound, i.e. for all c ∈ R, there exists P ∈ P∗ such that EP [Π
nx
m ] < c. Given c ∈ R,

let Pc ∈ P be such that

Pc

(
Dm̃ = 1, Rm̃ = Dm̃w(Y

0), Cm̃ = Dm̃(w(Y
1
m̃)− w(Y 0)), Y 1

m̃ = y
1
, Y 0 = y

0

)
= 1

for all m̃ ∈ M∗, and

Pc

(
Dm̃ = 1, Rm̃ = Dm̃w(Y

0), Cm̃ = Dm̃ · kc, Y 1
m̃ = y

1
, Y 0 = y

0

)
= 1

for all m̃ ∈ M\M∗, where kc > γ−1[b(y
1
)− b(y

0
)− (w(y

1
)−w(y

0
))]. Clearly, P̃ ∈ Pnx, yet

EP̃ [Π
nx
m ] < c.

To prove the second claim, notice that necessity follows immediately because Πnx
m ≤ 0

and the premise implies that Πnx
m ≥ 0. For sufficiency, notice that, m ∈ M \ M∗ implies

Πnx
m < 0. Hence, m ∈ M∗. But then,

min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + γ)[w(y1)− w(y0)] = 0

implies that b(y1)− b(y0)− (1+γ)[w(y1)−w(y0)] ≥ 0 for all y0, y1 ∈ Y such that y0 ≤ y1. ■
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PROOF OF PROPOSITION 4 The proof mirrors that of Lemmas 1 and 2 and Theorem

1. First, let m ∈ M∗. Following the proof of Lemma 1, one can obtain that, for all P ∈ P∗,

EP [Π
cf
m ] ≥ EP [b(Ym)− b(Y 0)− (1 + λ)Dm[w(Ym)− w(Y 0)]]

≥ min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + λ)[w(y1)− w(y0)]

and that EP̃ [Π
cf
m ] = min{(y0,y1)∈Y×Y:y0≤y1} b(y1) − b(y0) − (1 + λ)[w(y1) − w(y0)] for some

P̃ ∈ P∗, so that

Πcf
m = min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− (1 + λ)[w(y1)− w(y0)].

Similarly, one can follow the proof of Lemma 2 to find that for m ∈ M \M∗,

Πcf
m = min

(y0,y1)∈Y×Y
b(y1)− b(y0)− (1 + λ)w(y1).

To prove the second claim, notice that necessity follows immediately because Πcf
m ≤ 0

and the premise implies that Πcf
m ≥ 0. For sufficiency, notice that, m ∈ M \ M∗ implies

Πcf
m < 0. Hence, m ∈ M∗. But then,

min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− (1 + λ)[w(y1)− w(y0)] = 0

implies that b(y1)− b(y0)− (1+λ)[w(y1)−w(y0)] ≥ 0 for all y0, y1 ∈ Y such that y0 ≤ y1. ■

PROOF OF LEMMA 3 If m ∈ M \Mfc, one can proceed as in Lemma 2 to find that

Πfc
m = min

(y0,y1)∈Y×Y
b(y1)− b(y0)− w(y1).

Otherwise, for any P ∈ Pfc we have that:

EP [Πm] = EP [b(Ym)− b(Y 0)− [Wm −Rm]]

= EP [b(Ym)− b(Y 0)−Dmw(Ym)],

since P (Rm = 0) = 1.

By the potential outcomes model (1), if P (Dm = 1) = 0, then

EP [Πm] = EP [b(Ym)− b(Y 0)−Dmw(Ym) |Dm = 0] = EP [b(Y
0)− b(Y 0) |Dm = 0] = 0.
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Otherwise,

EP [Πm] = P (Dm = 1)EP [b(Y
1
m)− b(Y 0)− w(Y 1

m) |Dm = 1]

≥ P (Dm = 1) min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− w(y1)],

where the inequality holds because P satisfies Assumption II and b is strictly increasing, and

the minimum exists because Y is compact and b and w are continuous.

Since

min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− w(y1) < 0,

we conclude that

EP [Πm] ≥ min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)].

Next, consider P̃ ∈ P such that P̃ (Dm̃ = 1, Rm̃ = Dm̃w(Y
0), Y 1

m̃ = y
1
, Y 0 = y

0
) = 1 for

all m̃ ∈ M, where (
y
1
, y

0

)
∈ argmin

{(y0,y1)∈Y2:y0≤y1}
b(y1)− b(y0)− w(y1).

Clearly, P̃ satisfies Assumption II for all contract-auction pairs in Mfc, so P̃ ∈ Pfc. More-

over,

EP̃ [Πm] = b(y
1
)− b(y

0
)− w(y

1
).

It follows that

Πfc
m = min

{(y0,y1)∈Y2:y0≤y1}
b(y1)− b(y0)− w(y1).

■

PROOF OF LEMMA 4 The proof mirrors that of Lemma 3. If m ∈ M\Mfc, one can

proceed as in Lemma 2 to find that

Πfc
m (c) = min

(y0,y1)∈Y×Y
b(y1)− b(y0)− w(y1).

Otherwise, for any P ∈ Pfc(c) we have that:

EP [Πm] = EP [b(Ym)− b(Y 0)−Dmw(Ym)],

since P (Rm = 0) = 1.
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By the potential outcomes model (1), if P (Dm = 1) = 0, then

EP [Πm] = EP [b(Ym)− b(Y 0)−Dmw(Ym) |Dm = 0] = EP [b(Y
0)− b(Y 0) |Dm = 0] = 0.

Otherwise,

EP [Πm] = P (Dm = 1)EP [b(Y
1
m)− b(Y 0)− w(Y 1

m) |Dm = 1]

≥ P (Dm = 1) min
{(y0,y1)∈Y2:b(y1)−b(y0)≥c}

b(y1)− b(y0)− w(y1),

where the inequality holds because P (b(Y 1
m) − b(Y 0) ≥ c) = 1 and the minimum exists

because Y is compact and b and w are continuous. Hence,

EP [Πm] ≥ min

{
0, min

{(y0,y1)∈Y×Y:b(y1)−b(y0)≥c}
b(y1)− b(y0)− w(y1)

}
.

Moreover, there exists P ′ ∈ P such that P ′(Dm̃ = 0, b(Y 1
m̃)− b(Y 0) ≥ c, Rm̃ = 0) = 1 for all

m̃ ∈ M. Clearly, P ′ ∈ Pcf (c) and E′
P [Πm] = 0.

Finally, consider P̃ ∈ P such that P̃ (Dm̃ = 1, Rm̃ = 0, Y 1
m̃ = y

1
, Y 0 = y

0
) = 1 for all

m̃ ∈ M, where (
y
1
, y

0

)
∈ argmin

{(y0,y1)∈Y2:b(y1)−b(y0)≥c}
b(y1)− b(y0)− w(y1).

Clearly, EP̃ [b(Y
1
m)− b(Y 0)] ≥ c, so P̃ ∈ Pfc. Moreover,

EP̃ [Πm] = b(y
1
)− b(y

0
)− w(y

1
).

We conclude that

Πfc
m (c) = min

{
0, min

{(y0,y1)∈Y×Y:b(y1)−b(y0)≥c}
b(y1)− b(y0)− w(y1)

}
.

■

PROOF OF PROPOSITION 5 Notice that, because b is strictly increasing,

min
{(y0,y1)∈Y×Y:b(y1)−b(y0)≥c}

b(y1)− b(y0)− w(y1)

= min
{(y0,y1)∈Y×Y:b(y1)−b(y0)=c}

b(y1)− b(y0)− w(y1)

= min
{(y0,y1)∈Y×Y:b(y1)−b(y0)=c}

c− w(y1).
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Therefore, by Lemma 4,

Πfc
m (c) = 0 ⇐⇒ min

{(y0,y1)∈Y×Y:b(y1)−b(y0)≥c}
b(y1)− b(y0)− w(y1) ≥ 0

⇐⇒ min
{(y0,y1)∈Y×Y:b(y1)−b(y0)=c}

c− w(y1) ≥ 0

⇐⇒ w(y) ≤ c for all y ∈ Y such that b(y) ≥ c+ b(y).

PROOF OF LEMMA 5 Let m ∈ Mmb. For any P ∈ Pmb, it follows that:

EP [Πm] = EP [b(Ym)− b(Y 0)−max{0, Wm −Rm}]
= EP [b(Ym)− b(Y 0)−max{0, Dmw(Ym)−Rm}]
≥ EP [b(Ym)− b(Y 0)−max{0, Dm(w(Ym)− w(Y 0)}]
= EP [b(Ym)− b(Y 0)−Dm[w(Ym)− w(Y 0)]],

where the inequality holds because P satisfies Assumption I’ for m, and the last equality

holds because P satisfies Assumption II and w is non-decreasing. At this stage, we can

proceed as in Lemma 1 to find that

Πm = min
{(y0,y1)∈Y2:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)].

Now consider m ∈ M \Mmb. For any P ∈ P∗, we have that

EP [Πm] = EP [b(Ym)− b(Y 0)−max{0, Wm −Rm}]
≥ EP [b(Ym)− b(Y 0)−max{0, Wm}]
= EP [b(Ym)− b(Y 0)−Dmw(Ym)],

where the inequality holds because Rm is non-negative, and the last equality follows because

w is non-negative. Here, we can proceed as in Lemma 2 to find that

Πm = min
(y0,y1)∈Y×Y

b(y1)− b(y0)− w(y1).

■

PROOF OF PROPOSITION 6 The proof mirrors that of Theorem 1.
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PROOF OF PROPOSITION 7 First, let m ∈ M∗. Following the proof of Lemma 1,

one can obtain that, for all P ∈ P∗,

EP [Π
pc
m] = b(Ym)− b(Y 0)− [W pc

m −Rm]

≥ b(Ym)− b(Y 0)− [Wm −Rm]

≥ min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)]

and that EP̃ [Π
pc
m] = min{(y0,y1)∈Y×Y:y0≤y1} b(y1)− b(y0)− [w(y1)− w(y0)] for some P̃ ∈ P∗, so

that

Πpc
m = min

{(y0,y1)∈Y×Y:y0≤y1}
b(y1)− b(y0)− [w(y1)− w(y0)].

Similarly, one can follow the proof of Lemma 2 to find that for m ∈ M \M∗,

Πpc
m = min

(y0,y1)∈Y×Y
b(y1)− b(y0)− w(y1).

To prove the second claim, notice that necessity follows immediately because Πpc
m ≤ 0 and

the premise implies that Πpc
m ≥ 0. For sufficiency, notice that, m ∈ M\M∗ implies Πpc

m < 0.

Hence, m ∈ M∗. But then,

min
{(y0,y1)∈Y×Y:y0≤y1}

b(y1)− b(y0)− [w(y1)− w(y0)] = 0

implies that b(y1)− b(y0)− [w(y1)− w(y0)] ≥ 0 for all y0, y1 ∈ Y such that y0 ≤ y1. ■

B Optimality of Linear Contracts

In this section, we show that linear contract-auction pairs are maximin optimal under the

following relaxation of Assumption II:

Assumption V. EP [b(Ym)− b(Y 0)] ≥ 0.

Assumption V requires that the principal’s benefit from the outcome under m exceed her

benefit from the counterfactual, baseline outcome in expectation, rather than almost surely.

It is a weaker assumption than Assumption II: if P ∈ P satisfies Assumption II for m ∈ M,

then it satisfies Assumption V for m, but not vice versa.

Thus, the principal imposes Assumptions I and V for contract-auction pairs in M∗. The

resulting set of admissible probability measures is P ′, where

P ′ ≡ {P ∈ P : P satisfies Assumptions I and V for all m ∈ M∗},
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and her payoff guarantee from contract-auction pair m equals Π′
m, given by

Π′
m =

 infP∈P ′ EP [Πm] if {EP [Πm] : P ∈ P ′} has a lower bound

−∞ otherwise.

Proposition 8 establishes that under the relaxation of Assumption II, linear contract-

auction pairs are still maximin optimal.

Proposition 8. Suppose there is some contract-auction pair m′ = (w′, a′) ∈ M∗ such that

w′(y) = α · b(y), where α ∈ [0, 1]. Then, the maximum of {Π′
m : m ∈ M} exists, equals zero

and is attained by m′.

Proof. The proof involves two simple steps. First, we show that Πm ≤ 0 for all m ∈ M.

Then, we prove that EP [Πm′ ] ≥ 0 for all P ∈ P ′ with equality for some P . These findings

imply that maxm∈MΠm exists, equals zero, and is attained by m′.

Consider any contract-auction pair m ∈ M and let P ∈ P be such that P (Dm̃ = 0, Rm̃ =

0, Y 1
m̃−Y 0 > 0) = 1 for all m̃ ∈ M. By the potential outcomes model (1), P (Πm = 0) = 1, so

that EP [Πm] = 0. Since M∗ ⊆ M, P satisfies Assumptions I and V for all contract-auction

pairs in M∗. Hence, P ∈ P ′ and we conclude that Πm ≤ 0.

Next, consider contract-auction pair m′. For any P ∈ P ′, it follows that:

EP [Πm′ ] = EP [b(Ym′)− b(Y 0)− [Wm′ −Rm′ ]]

≥ EP [b(Ym′)− b(Y 0)−Dm′ [w(Ym′)− w(Y 0)]]

= EP [(1− αDm′)(b(Ym′)− b(Y 0))].

The inequality holds because P satisfies Assumption I. If P (Dm′ = 1) = 0, it follows that:

EP [Πm′ ] ≥ EP [b(Ym′)− b(Y 0) |Dm′ = 0]

= EP [b(Y
0)− b(Y 0) |Dm′ = 0]

= 0,

by the potential outcomes model (1). Otherwise, we obtain

EP [Πm′ ] ≥ (1− α)P (Dm′ = 1)EP [b(Ym′)− b(Y 0) |Dm′ = 1]

= (1− α)EP [b(Ym′)− b(Y 0)]

≥ 0,

where the last inequality holds because P satisfies Assumption V and because α ∈ [0, 1].

Finally, as in our previous argument, there exists P̂ ∈ P ′ such that P̂ (Ym′ = Y 0) = 1 and
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EP [Rm′ −Dm′ · w(Y 0)] = 0, so that EP̂ [Πm′ ] = 0. ■

Proposition 8 is useful for the principal in situations where she considers Assumption II

too stringent but is willing to assume that contract-auction pairs induce outcome changes

that are beneficial to her, on average.
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